Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1335975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605963

RESUMO

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I , Linfócitos T CD8-Positivos , Antígenos , Ovalbumina , Complexo Principal de Histocompatibilidade
2.
Int J Tryptophan Res ; 15: 11786469221128697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325028

RESUMO

Depressive disorders are partially attributed to chronic inflammation associated with the tryptophan (Trp)-kynurenine (Kyn) pathway. Recent evidence suggests that anti-inflammatory agents may reduce the risk of depression. The present study aimed to elucidate the potential of the citrus flavonoid hesperidin, which exhibits anti-inflammatory activity, in suppressing the Trp-Kyn pathway in the brain, using a lipopolysaccharide (LPS)-induced inflammation mouse model. Dietary hesperidin was found to suppress activation of the Trp-Kyn pathway in the prefrontal cortex. In addition, it reduced systemic LPS-induced signs of illness, such as low skin temperature and enhanced leukocyte count in the blood. However, dietary supplementation with hesperidin did not improve body weight loss, food intake, water intake, or splenic increases in leukocyte numbers in the LPS model. Collectively, the results suggest that dietary hesperidin can partially regulate central and peripheral events linked to inflammation in LPS mouse models.

3.
Front Immunol ; 13: 1001179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389807

RESUMO

Immunological aging is a critical event that causes serious functional impairment in the innate immune system. However, the identification markers and parameters are still poorly understood in immunological aging of myeloid lineage cells. Here, we show that a downregulation of lymphocyte antigen 6 complex locus G6D (Ly-6G) observed in aged mouse neutrophils could serve as a novel marker for the prediction of age-associated functional impairment in the neutrophils. Ly-6G expression was significantly downregulated in the bone marrow (BM) neutrophils of aged mice compared to young mice confirmed by flow cytometry analysis. In vitro experiments using BM-isolated neutrophils showed significant downregulations in their activities, such as phagocytosis, reactive oxygen species (ROS) production, interleukin (IL)-1ß production, neutrophil extracellular trap (NET) formation, and migration as well as bacterial clearance, in the aged mouse neutrophils compared to those of young mice counterparts. Interestingly, the magnitudes of functional parameters were strongly correlated with the Ly-6G expression in the neutrophils. Thus, our results suggest that downregulation of Ly-6G reflects the age-associated functional attenuation of the neutrophils.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Camundongos , Animais , Regulação para Baixo , Fagocitose , Antígenos de Histocompatibilidade/metabolismo , Linfócitos
4.
Biosci Microbiota Food Health ; 41(4): 185-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258765

RESUMO

Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly driven in specific parts of the body, such as the skeletal muscle and brain. However, our report shows a novel aspect of creatine utilization and ATP synthesis in innate immune cells. Creatine supplementation enhanced immune responses in neutrophils, such as cytokine production, reactive oxygen species (ROS) production, phagocytosis, and NETosis, which were characterized as antibacterial activities. This creatine-induced functional upregulation of neutrophils provided a protective effect in a murine bacterial sepsis model. The mortality rate in mice challenged with Escherichia coli K-12 was decreased by creatine supplementation compared with the control treatment. Corresponding to this decrease in mortality, we found that creatine supplementation decreased blood pro-inflammatory cytokine levels and bacterial colonization in organs. Creatine supplementation significantly increased the cellular ATP level in neutrophils compared with the control treatment. This ATP increase was due to the phosphocreatine system in the creatine-treated neutrophils. In addition, extracellular creatine was used in this ATP synthesis, as inhibition of creatine uptake abolished the increase in ATP in the creatine-treated neutrophils. Thus, creatine is an effective nutrient for modifying the immunological function of neutrophils, which contributes to enhancement of antibacterial immunity.

5.
Biosci Microbiota Food Health ; 41(3): 130-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35854694

RESUMO

Lactococcus lactis subsp. cremoris C60 is a probiotic strain that induces diverse functional modifications in immune cells. In this report, as a novel effect of C60 on myeloid lineage cells, we show that C60 enhances the immunological function of macrophages that consequently promotes CD4+ T cell activity in an antigen-dependent manner. Heat-killed (HK) C60 induced the production of pro-inflammatory cytokines in thioglycolate-elicited peritoneal macrophages (TPMs) much stronger than Toll-like receptor (TLR) ligand stimulation. The HK-C60 treatment also augmented the expression of antigen-presenting and co-stimulatory molecules, such as major histocompatibility complex (MHC) class II, CD80, and CD86, as well as antigen uptake in TPMs. These HK-C60-mediated functional upregulations in TPMs resulted in the promotion of CD4+ T cell activation in an antigen-dependent manner. Interestingly, the TPMs that originated from the mice fed the HK-C60 diet showed pre-activated characteristics, which was confirmed by the upregulation of cytokine production and antigen presentation-related molecule expression under lipopolysaccharide (LPS) stimulation. Furthermore, the antigen-dependent CD4+ T cell activation was also enhanced by the TPMs. This implied that antigen presentation activity was enhanced in the TPMs that originated from the HK-C60 diet mice. Thus, C60 effectively upregulates the immunological function of macrophages that directly connects to CD4+ T cell-based adaptive immunity.

6.
Int J Tryptophan Res ; 15: 11786469211066285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002254

RESUMO

The kynurenine (Kyn) pathway plays crucial roles in several inflammation-induced disorders such as depression. In this study, we measured Kyn and other related molecules in the blood plasma, brain, and urine of male C57BL/6J mice (B6) fed non-purified (MF) and semi-purified (AIN-93G and AIN-93M) standard rodent diets. Mice fed MF had increased plasma Kyn levels compared with those on AIN93-based diets, as well as decreased hippocampal Kyn levels compared with those fed AIN-93G. Previous studies showed that branched chain amino acids (BCAAs) suppress peripheral blood Kyn transportation to the brain, but plasma BCAA levels were not significantly different between the diet groups in our study. Urine metabolome analysis revealed that feed ingredients affected the excretion of many metabolites, and MF-fed mice had elevated excretion of kynurenic and quinolinic acids, pivotal metabolites in the Kyn pathway. Collectively, the level of critical metabolites in the Kyn pathway in the central and peripheral tissues was strongly affected by feed ingredients. Therefore, feed selection is a critical factor to ensure the reproducibility of experimental data in studies involving rodent models.

7.
Pathogens ; 9(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050033

RESUMO

Toll-like receptor (TLR) signaling is an indispensable factor in immune cells activation. Many TLR ligands have been identified, and were characterized the immunological functions such as inflammatory cytokine production in immune cells. However, the anti-inflammatory response in TLR ligand-mediated manner is poorly understood. In this report, we show that bacterial lipoteichoic acid (LTA), which is a TLR2 ligand from gram-positive bacteria including Staphylococcus aureus (S. aureus), suppresses TLR-mediated inflammatory response in dendritic cells (DCs). The TLR ligand-induced Tumor Necrosis Factor-alpha (TNF-α) production was suppressed in the bone marrow derived dendritic cells (BMDCs) by co-treatment of LTA. The cellular activation, which was characterized as upregulations of CD80, CD86 and major histocompatibility complex II (MHC II) expression, was also suppressed in the TLR ligand stimulated BMDCs in the presence of LTA. While LTA itself didn't induced both TNF-α production and upregulation of cell surface markers. The LTA mediated immunosuppressive function was abolished by TLR2 blocking in lipopolysaccharide (LPS)-stimulated BMDCs. Furthermore, LTA also showed the immunosuppressive function in the generation of IFN-γ+CD4+ T (Th1) cells by attenuation of antigen presenting activity in the BMDCs. In the imiquimod (IMQ)-induced acute skin inflammation, LTA suppressed the inflammation by downregulation of the activation in skin accumulated DCs. Thus, LTA is a TLR2 dependent immunological suppressor against inflammatory response induced by other TLR ligands in the DCs.

8.
Nutrients ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121026

RESUMO

Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.


Assuntos
Interleucina-18/deficiência , Intestino Delgado/imunologia , Lactococcus/fisiologia , Probióticos/administração & dosagem , Linfócitos T/imunologia , Envelhecimento , Animais , Linfócitos T CD4-Positivos , Contagem de Células , Células Dendríticas/imunologia , Dieta , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mucosa/imunologia , Linfócitos T/citologia
9.
J Neuroimmunol ; 339: 577088, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733567

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare neurodegenerative disorder caused by a persistent infection with aberrant measles virus. Indoleamine-2, 3-dioxygenase (IDO) initiates the increased production of kynurenine pathway (KP) metabolites quinolinic acid (QUIN), which has an excitotoxic effect for neurons. We measured serum IDO activity and cerebrospinal fluid (CSF) levels of QUIN. The CSF QUIN levels were significantly higher in SSPE patients than in controls, and increased according as neurological disability in a patient studied. Elevation of CSF QUIN and progression of SSPE indicate a pathological role of KP metabolism in the inflammatory neurodestruction.


Assuntos
Ácido Quinolínico/líquido cefalorraquidiano , Panencefalite Esclerosante Subaguda/líquido cefalorraquidiano , Panencefalite Esclerosante Subaguda/diagnóstico , Adolescente , Biomarcadores/líquido cefalorraquidiano , Criança , Pré-Escolar , Eletroencefalografia/métodos , Feminino , Seguimentos , Humanos , Masculino , Panencefalite Esclerosante Subaguda/fisiopatologia , Adulto Jovem
10.
Biosci Biotechnol Biochem ; 83(9): 1756-1765, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31119994

RESUMO

Depressive disorders are partly caused by chronic inflammation through the kynurenine (KYN) pathway. Preventive intervention using anti-inflammatory reagents may be beneficial for alleviating the risk of depression. In this study, we focused on the Japanese local citrus plant, Citrus tumida hort. ex Tanaka (C. tumida; CT), which contains flavonoids such as hesperidin that have anti-inflammatory actions. The dietary intake of 5% immature peels of CT fruits slightly increased stress resilience in a subchronic and mild social defeat (sCSDS) model in mice. Moreover, the dietary intake of 0.1% hesperidin significantly increased stress resilience and suppressed KYN levels in the hippocampus and prefrontal cortex in these mice. In addition, KYN levels in the hippocampus and prefrontal cortex were significantly correlated with the susceptibility to stress. In conclusion, these results suggest that dietary hesperidin increases stress resilience by suppressing the augmentation of KYN signaling under sCSDS.


Assuntos
Citrus/química , Dieta , Hesperidina/administração & dosagem , Hipocampo/efeitos dos fármacos , Cinurenina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Resiliência Psicológica/efeitos dos fármacos , Comportamento Social , Estresse Psicológico/prevenção & controle , Animais , Comportamento Animal , Corticosterona/sangue , Hesperidina/farmacologia , Hipocampo/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Cinurenina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Córtex Pré-Frontal/metabolismo , Triptofano/sangue
11.
Nagoya J Med Sci ; 81(1): 55-64, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30962655

RESUMO

The major hallmarks of Alzheimer's disease (AD) are the extracellular accumulation of pathological amyloid beta (Aß) in the brain parenchyma and Aß deposition in cerebral blood walls (cerebral amyloid angiopathy; CAA). Although CAA occurs in more than 80% of AD patients, the mechanisms of Aß deposition and clearance around the vessel walls are unknown. We found Aß-degrading activity in human serum during analysis of the regulatory mechanism of Aß production in human endothelial cells. To elucidate the metabolic dynamics of Aß surrounding the brain microvessels, we identified Aß-degrading activity in human serum (blood Aß-degrading activity: BADA) by column chromatography and LC/MS. BADA exhibited characteristics of an acidic protein, pI 4.3, which had two different protein surface charges (low and high affinity cations). Both BADA fractions had a relative molecular mass of greater than 400 kDa. Furthermore, BADA in the low affinity cation fraction was inhibited by the serine protease inhibitor 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF). We clarified alpha-2-macroglobulin (a2M) and several serine proteases from this BADA by LC-MS. Moreover, we demonstrated that BADA is increased by approximately 5000-fold in human serum by column chromatography. Therefore, BADA may play an important role in the circulation and metabolism of Aß in human brain microvessels.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/fisiologia , Angiopatia Amiloide Cerebral/patologia , Cromatografia Líquida , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macroglobulinas/metabolismo , Espectrometria de Massas , Microvasos/patologia , Microvasos/fisiologia , Serina Proteases/metabolismo
12.
J Med Chem ; 59(21): 9760-9773, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27690429

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is an attractive target for anticancer therapy. Herein, we report a virtual screening study which led to the identification of compound 5 as a new IDO1 inhibitor. In order to improve the biological activity of the identified hit, arylthioindoles 6-30 were synthesized and tested. Among these, derivative 21 exhibited an IC50 value of 7 µM, being the most active compound of the series. Furthermore, compounds 5 and 21 induced a dose-dependent growth inhibition in IDO1 expressing cancer cell lines HTC116 and HT29. Three-dimensional quantitative structure-activity relationship studies were carried out in order to rationalize obtained results and suggest new chemical modifications.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Modelos Moleculares , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
13.
Hepatology ; 63(1): 83-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26458241

RESUMO

UNLABELLED: Indoleamine-2, 3-dioxygenase (IDO), an interferon-γ-inducible enzyme catalyzing tryptophan into kynurenine, exerts dual functions in infectious diseases, acting as a suppressor of intracellular pathogens and as an immune regulator. We explored the roles of IDO in hepatitis B virus (HBV) clearance from infected patients. We examined IDO activity, serum chemokines, and cytokines in 53 HBV-positive patients (25 acute hepatitis, 14 chronic hepatitis, and 14 hepatic flare) and 14 healthy volunteers. In order to clarify the mechanisms of IDO induction and its impact on HBV replication, we used a culture model consisting of human natural killer cells, plasmacytoid dendritic cells, and HBV-transfected Huh7 cells in which IDO expression is controlled. A robust activation of IDO with an inverse correlation of alanine aminotransferase at the peak was observed in patients with acute hepatitis B but not in patients with hepatic flare. In acute hepatitis patients who eventually cleared HBV, IDO activity, chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, and CXCL11 increased at the peak of alanine aminotransferase. In contrast, in patients with hepatic flare, IDO activity remained at lower levels during the observation period, regardless of the surge of CXCL9, CXCL10, and CXCL11 at the alanine aminotransferase peak. Natural killer cells and plasmacytoid dendritic cells synergistically produced interferon-γ and interferon-α, thereby enhancing IDO activity and HBV suppression in Huh7 cells. Such suppressor capacity of IDO on HBV was abrogated in IDO-knockout cells and recovered by the reinduction of IDO in the cells. CONCLUSION: IDO is an anti-HBV effector and an indicator of subsequent immune responses operative during the early phase of infection; its activity is boosted by coexisting natural killer cells and plasmacytoid dendritic cells.


Assuntos
Hepatite B/enzimologia , Hepatite B/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Doença Aguda , Adulto , Biomarcadores/sangue , Estudos Transversais , Citocinas/sangue , Feminino , Hepatite B/sangue , Humanos , Masculino , Pessoa de Meia-Idade
14.
Lipids Health Dis ; 12: 68, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659495

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia among neurodegenerative diseases, afflicts millions of elderly people worldwide. In addition to amyloid-beta (Aß) peptide and phosphorylated tau, lipid dysregulation is suggested to participate in AD pathogenesis. However, alterations in individual lipid species and their role in AD disease progression remain unclear. METHODS: We performed a lipidomic analysis using brain tissues and plasma obtained from mice expressing mutated human amyloid precursor protein (APP) and tau protein (Tg2576×JNPL3) (APP/tau mice) at 4 (pre-symptomatic phase), 10 (early symptomatic) and 15 months (late symptomatic). RESULTS: Levels of docosahexaenoyl (22:6) cholesterol ester (ChE) were markedly increased in APP/tau mice compared to controls at all stages examined. Several species of ethanolamine plasmalogens (pPEs) and sphingomyelins (SMs) showed different levels between brains from APP/tau and control mice at various stages of AD. Increased levels of 12-hydroxyeicosatetraenoic acid (12-HETE) during the early symptomatic phase were consistent with previous reports using human AD brain tissue. In addition, 19,20-dihydroxy-docosapentaenoic acid (19,20-diHDoPE) and 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE), which are produced from docosahexaenoic acid and eicosapentaenoic acid via 19,20-epoxy-docosapentaenoic acid (19,20-EpDPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EpETE), respectively, were significantly increased in APP/tau brains during the pre-symptomatic phase, and concomitant increases occurred in plasma. Several arachidonic acid metabolites such as prostaglandin D2 (PGD2) and 15-hydroxyeicosatetraenoic acid (15-HETE), which have potential deteriorating and protective actions, respectively, were decreased in the early symptomatic phase of APP/tau mice. Significant decreases in phosphatidylcholines and PEs with polyunsaturated fatty acids were also detected in the late symptomatic phase, indicating a perturbation of membrane properties. CONCLUSION: Our results provide fundamental information on lipid dysregulation during various stages of human AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/biossíntese , Encéfalo/metabolismo , Proteínas tau/biossíntese , Adulto , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Araquidônico/biossíntese , Ácido Araquidônico/genética , Ésteres do Colesterol/biossíntese , Ésteres do Colesterol/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/metabolismo , Mutação , Plasmalogênios/biossíntese , Plasmalogênios/genética , Esfingomielinas/biossíntese , Esfingomielinas/genética , Proteínas tau/genética
15.
J Clin Biochem Nutr ; 52(2): 133-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23526113

RESUMO

Alzheimer's disease (AD) is the most common cause of neurodegenerative dementia among elderly patients. A biomarker for the disease could make diagnosis easier and more accurate, and accelerate drug discovery. In this study, NMR-based metabolomics analysis in conjunction with multivariate statistics was applied to examine changes in urinary metabolites in transgenic AD mice expressing mutant tau and ß-amyloid precursor protein. These mice showed significant changes in urinary metabolites throughout the progress of the disease. Levels of 3-hydroxykynurenine, homogentisate and allantoin were significantly higher compared to control mice in 4 months (prior to onset of AD symptoms) and reverted to control values by 10 months of age (early/middle stage of AD), which highlights the relevance of oxidative stress to this neurodegenerative disorder even prior the onset of dementia. The level of these changed metabolites at very early period may provide an indication of disease risk at asymptomatic stage.

16.
J Gastroenterol ; 48(5): 660-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22976933

RESUMO

BACKGROUND: Altered functions of dendritic cells (DCs) and/or increases of regulatory T cells (Tregs) are involved in the pathogenesis of chronic hepatitis C virus (HCV) infection. A tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO), is reported to be an inducer of immune tolerance. Our aim was to clarify whether or not IDO is activated in chronic hepatitis C patients and its role in immune responses. METHODS: This study enrolled 176 patients with chronic HCV infection and 37 healthy volunteers. Serum kynurenine concentration was evaluated by high-performance liquid chromatography, and its correlation with clinical parameters was examined. Monocyte-derived DCs were prepared from the subjects and subsequently stimulated with a combination of lipopolysaccharide and interferon-gamma to induce functional IDO (defined as IDO-DCs). The phenotypes, kynurenine or cytokine production, and T-cell responses with IDO-DCs were compared between the patients and healthy volunteers. RESULTS: The serum kynurenine level in the patients was significantly higher than that in the healthy volunteers, and the level of serum kynurenine was positively correlated with the histological activity or fibrosis score. IDO activity in IDO-DCs from the patients was significantly higher than that in IDO-DCs from the volunteers. Furthermore, IDO-DCs from the patients induced more Tregs in vitro compared with those from the volunteers, and the frequency of induced Tregs by IDO-DCs was decreased with an IDO-specific inhibitor. CONCLUSIONS: Systemic IDO activity is enhanced in chronic hepatitis C patients in correlation with the degree of liver inflammation and fibrosis. In response to inflammatory stimuli, DCs from the patients tend to induce Tregs, with some of this action being dependent on IDO.


Assuntos
Células Dendríticas/enzimologia , Hepatite C Crônica/enzimologia , Hepatite C Crônica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T Reguladores/fisiologia , Adulto , Feminino , Humanos , Masculino
17.
J Neurochem ; 118(5): 796-805, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21711351

RESUMO

At endogenous brain concentrations, the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA) is a preferential antagonist of the α7 nicotinic acetylcholine receptor (α7nAChR). In the present study, male Wistar rats were fed a high tryptophan diet (adding 0.1-1.5% tryptophan) for 24 h to examine (i) the effect of increased tryptophan on extracellular dopamine (DA) and KYNA levels and (ii) to determine any possible interactions between DA and KYNA. Brain KYNA levels were dose-dependently increased by tryptophan intake, and these increase were consistent with kynurenine (KYN), the precursor to KYNA, levels in the brain, plasma and liver. Administration of the 1.5% tryptophan added diet reduced the extracellular DA level to 60%, and increased the extracellular KYNA to 320% in the striatum. The DA reduction was attenuated through inhibiting KYNA synthesis with 2-aminoadipic acid. These results indicate that a high tryptophan diet can induce KYNA production and suppress DA release. One possible mechanism is that as more KYN is metabolized from the high doses of tryptophan in the liver and released into the blood stream, KYNA production in astrocytes is enhanced and the increased extracellular KYNA inhibits DA release by blocking α7nAChRs. Dietary manipulation of KYNA formation in astrocytes may offer a unique strategy to modulate DA.


Assuntos
Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Espaço Extracelular/efeitos dos fármacos , Ácido Cinurênico/metabolismo , Triptofano/administração & dosagem , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Administração Oral , Animais , Dieta , Relação Dose-Resposta a Droga , Ácido Homovanílico/metabolismo , Técnicas In Vitro , Cinurenina/metabolismo , Masculino , Microdiálise/métodos , Ratos , Ratos Wistar , Estatísticas não Paramétricas
18.
Biosci Biotechnol Biochem ; 73(2): 274-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19202300

RESUMO

We discovered markedly differing catabolism of nicotinamide among rat strains. We compared the catabolism of nicotinamide and also that of the other tryptophan-nicotinamide and water-soluble vitamins among the four strains, Wistar, Sprague-Dawley (SD), August-Copenhagen Irish (ACI) and Fischer 344. The major urinary catabolite of nicotinamide was N(1)-methyl-4-pyridone-3-carboxamide in Wistar, SD and ACI, and N(1)-methylnicotinamide in Fischer rats. This phenomenon was attributed to the enzyme activity involved in the reaction of N(1)-methylnicotinamide to N(1)-methyl-4-pyridone-3-carboxamide being much lower in Fischer than in the other three strains. With the water-soluble vitamins, this specific phenomenon was only observed in the catabolism of vitamin B(6); the urinary catabolite, 4-pyridoxic acid, was much lower too. It was found for the first time that the activities of oxidase were lower in Fischer than in the other strains. This study showed that Wistar, SD, ACI strains had similar water-soluble vitamin metabolism including nicotinamide catabolism.


Assuntos
Niacinamida/metabolismo , Ratos Endogâmicos/classificação , Ratos Endogâmicos/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Masculino , NAD/sangue , NADP/sangue , Ratos , Ratos Endogâmicos/sangue , Solubilidade , Especificidade da Espécie , Triptofano/metabolismo , Vitaminas/química , Vitaminas/metabolismo , Vitaminas/urina , Água/química
19.
Biosci Biotechnol Biochem ; 72(7): 1667-72, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18603814

RESUMO

Some people may take excessive tryptophan as a supplement in the expectation that the tryptophan metabolite, melatonine, will help to induce sufficient sleep. We investigated the basis for a useful index to assess the risk of a tryptophan excess. Young rats were fed on a 20% casein diet with 0, 0.5, 1.0, 2.0 or 5.0% added tryptophan for 30 d the apparent toxicity and growth retardation was observed in the 5.0% tryptophan-added group. Metabolites of the Tryptophan-nicotinamide pathway and such intermediates as kynurenic acid (KA), anthranilic acid (AnA), xanthurenic acid, 3-hydroxyanthranilic acid and quinolinic acid in 24-h urine increased in a dose-dependent manner. Of those metabolites and intermediates, the urinary excretion of KA progressively increased, and that of AnA dramatically increased in the 2.0 and 5.0% tryptophan-added groups. The urinary excretory ratio of AnA/KA was a high value for both the groups. These results suggest that the urinary ratio of AnA/KA could be a useful index to monitoran excessive tryptophan intake.


Assuntos
Ácido Cinurênico/urina , Triptofano/metabolismo , Triptofano/toxicidade , ortoaminobenzoatos/urina , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar , Triptofano/administração & dosagem
20.
Am J Physiol Regul Integr Comp Physiol ; 292(5): R1851-61, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17303681

RESUMO

We have recently reported that inhibition of transforming growth factor (TGF)-beta in the brain reduced fat-related energy substrates concentrations in response to exercise. We investigated the relevance between the mobilization of fat-related energy substrates (nonesterified fatty acid and ketone bodies) during exercise and the effects of TGF-beta in the brain. Low-intensity exercise was simulated by contraction of the hindlimbs, induced by electrical stimulation at 2 Hz in anesthetized rats (Sim-Ex). As with actual exercise, it was confirmed that mobilization of carbohydrate-related energy substrates (glucose and lactic acid) occurred immediately after the onset of Sim-Ex, and mobilization of fat-related energy substrates followed thereafter. The timing of mobilization of fat-related substrates corresponded to that of the increase in TGF-beta in cerebrospinal fluid (CSF) in Sim-Ex. The level of TGF-beta in CSF significantly increased after 10 min of Sim-Ex and remained elevated until 30 min of Sim-Ex. Intracisternal administration of TGF-beta caused rapid mobilization of fat-related energy substrates. Meanwhile, there were no effects on the changes in carbohydrate-related substrates. The levels of catecholamines were slightly elevated after TGF-beta administration, and, although not significantly in statistical terms, we consider that at least a part of TGF-beta signal was transducted via the sympathetic nervous system because of these increases. These data indicate that TGF-beta in the brain is closely related to the mobilization of fat-related energy substrates during low-intensity exercise. We hypothesized that the central nervous system plays a role in the regulation of energy metabolism during low-intensity exercise and this may be mediated by TGF-beta.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Catecolaminas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Corpos Cetônicos/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...